مدل سازی آشفتگی انبوهی جنگل در ارزیابی محیطی با استفاده از شبکه عصبی مصنوعی

Authors

علی جهانی

استادیار، گروه محیط زیست طبیعی و تنوع زیستی، دانشکده محیط زیست، دانشگاه محیط زیست

abstract

ارزیابی اثرات محیط زیستی به عنوان یک ابزار اساسی برای مدیریت محیط زیستی و توسعه پایدار شناخته شده است، اما زمانی که به مقادیر کمی برای تصمیم گیری نیاز است، ارزیابی اثرات دچار مشکل می شود و نیاز به مدل سازی آشکار است. هدف از پژوهش پیش رو طراحی و پیاده سازی یک سامانه مبنی بر شبکه عصبی مصنوعی با استفاده از اجزای اکوسیستم، فعالیت های طرح جنگلداری و میزان آشفتگی تراکم تاج پوشش اکوسیستم جنگلی (انبوهی جنگل) بود. پژوهش پیش رو در سه بخش پاتم، نم خانه و گرازبن جنگل خیرود نوشهر انجام شد. واحدهای همگن محیط زیستی با استفاده از منابع اکولوژیکی و ابزار دقیق gis تهیه شد. با انتخاب الگوریتم مناسب در محیط شبکه های عصبی مصنـوعی در نرم افزار neurosolutions 5، انبوهی جنگل براساس مقادیر کمی و کیفی شرایط اکولوژیک و فعالیت های انسانی شبیه سازی شد. شبکه پرسپترون چندلایه با یک لایه پنهان و چهار نرون در هر لایه با توجه به بیشترین مقدار ضریب تعیین (برابر با 0/9864)، بهترین عملکرد بهینه سازی توپولوژی را نشان داد. براساس نتایج تحلیل حساسیت، عامل های انسانی مانند تراکم دام در واحد سطح جنگل (تعداد در هکتار) در کنار عامل های طبیعی و اکولوژیکی مانند متوسط قطر درختان توده (سانتی متر) و عمق خاک به ترتیب بیشترین تأثیر را در میزان انبوهی جنگل نشان دادند. ارزیابی اثرات پروژه های اجرا شده علاوه بر اینکه تجربه ای در زمینه ارزیابی اثرات توسعه به شمار می رود، می تواند راه گشای تصمیم گیری در مورد اجرای پروژه های مشابه در مکان های مشابه باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل‌سازی آشفتگی انبوهی جنگل در ارزیابی محیطی با استفاده از شبکه عصبی مصنوعی

ارزیابی اثرات محیط زیستی به‌عنوان یک ابزار اساسی برای مدیریت محیط زیستی و توسعه پایدار شناخته شده است، اما زمانی‌که به مقادیر کمی برای تصمیم‌گیری نیاز است، ارزیابی اثرات دچار مشکل می‌شود و نیاز به مدل‌سازی آشکار است. هدف از پژوهش پیش‌رو طراحی و پیاده‌سازی یک سامانه مبنی بر شبکه عصبی مصنوعی با استفاده از اجزای اکوسیستم، فعالیت‌های طرح جنگلداری و میزان آشفتگی تراکم تاج‌پوشش اکوسیستم جنگلی (انبوهی...

full text

مدل‌سازی ارزیابی کیفیت زیباشناختی منظر جنگل با استفاده از شبکه عصبی مصنوعی

سابقه و هدف: با توجه به کاهش روزافزون قابلیت برداشت چوب از جنگل‌های هیرکانی نیاز به برنامه‌ریزی برای استفاده از سایر قابلیت‌های اکوسیستم‌های جنگلی همچون اکوتوریسم بیشتر از گذشته احساس می‌شود. برنامه‌ریزی اکوتوریسم نیاز به اطلاعات کافی درباره جذابیت‌های اکولوژیکی، ساختار و عناصر منظر طبیعی دارد. از طرفی ارزیابی صحیح از وضعیت مناظر مختلف در یک منطقه مستلزم داشتن اطلاعات کافی در مورد معیارهای تاث...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

مدل سازی کیفیت زیباشناختی منظر در فضای سبز شهری با استفاده از شبکه عصبی مصنوعی

ارزیابی‌های کیفیت منظر عمدتا اشاره به نقش کلیدی عناصر طبیعی و مصنوعی منظر در ایجاد رضایت‌مندی و درک زیبایی از منظر دارند. هدف از این مقاله مدل‌سازی ارزیابی کیفیت زیباشناختی منظر با استفاده از شبکه عصبی مصنوعی به منظور کشف روابط حاکم در ساختار منظر و ارتباط عناصر منظر با کیفیت زیباشناختی آن است. جهت انجام پژوهش حاضر چهار بوستان (جمشیدیه، نهج البلاغه، قیطریه، آب و آتش) با تنوع بالا در کیفیت منظر ...

full text

مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی

ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...

full text

مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی

Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of  this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...

full text

My Resources

Save resource for easier access later


Journal title:
تحقیقات جنگل و صنوبر ایران

جلد ۲۴، شماره ۲، صفحات ۳۲۲-۳۱۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023